

Progress report on the University of Arizona NMSD Mirror

Dave Baiocchi Steward Observatory

Personnel

Dave Baiocchi - Metrology, System Assembly

Roger Angel

Jim Burge - Principal Investigator

Scott DeRigne - Project Manager

Brian Cuerden - Project Engineer

Steve Bell - Electronics

Gil Rivlis - Actuator Software

A Solution for Lightweight Mirrors

Components

- 1. Glass facesheet
- 2. Position actuators
- 3. Lightweight reaction structure

Operation

- 1. Ideal Shape
- 2. Structure deforms, membrane follows
- 3. Actuators correct figure

The University of Arizona NGST Mirror System Demonstrator (NMSD)

- 2 meters in diameter
- 2 mm thick facesheet
- 166 actuators
- 35K operation
- Designed for launch
- 13 kg/m²

86 pounds

NMSD Reaction Structure

Designed by UA. Fabricated at Composite Optics, Inc (COI).

NMSD Actuators

Invented at the University of Arizona 40 grams, 10 nm step size, cryo operation

Actuator

Data

Typical Glass Fabrication Process

NMSD Glass Fabrication

Cast at the Steward Mirror Lab

NMSD Glass Fabrication

Convex side

Fabricated at the Optical Sciences Center

Concave side

NMSD Glass Meniscus

Loadspreader Bonding

• Courtaulds PR1564

Loadspreader Dynamics

The loadspreaders regulate the forces on the glass

- 0.1 lb upward force
- 0.3 lb downward force

Preparing for Coating

System Assembly

Assembled NMSD Mirror

System Testing

System Testing

Metrology - The Hartmann Test

Mask has 216 holes

Hartmann test has a large dynamic range

System Testing

Metrology - The Hartmann Test

Each actuator is surrounded by 6 spots

Blue - too low Red - too high

Algorithm calculates the surface figure

Surface Figure

Current Surface Map

11.4 microns rms surface61.3 microns PV surface

Progress

The figure is converging!

Current Issues

Surface accuracy depends on the actuators

Hardware issues

- Recalibrating the actuator-drive electronics
- Characterizing actuator performance

Solutions

• Real-time algorithm tracks actuator performance and compensates for any problems

Conclusion

- The mirror is assembled.
- We are working to improve the ambient figure.
- Valuable lessons for future mirrors.
- No "showstoppers".

NMSD Glass Deblocking

Hot Oil-Bath Technique

Floats attached to glass

Pitch softens and glass floats to the surface

NMSD Glass Deblocking

Hot Oil-Bath Technique

- Very safe
- 30W motor oil
- 250° F
- 18 floats

NMSD Glass Deblocking

Handling

Lifting the deblocked glass.

Degreasing/Cleaning